Search results for " molecular docking."

showing 10 items of 20 documents

Tryptophan-Containing Dual Neuroprotective Peptides: Prolyl Endopeptidase Inhibition and Caenorhabditis elegans Protection from β-Amyloid Peptide Tox…

2018

Neuroprotective peptides represent an attractive pharmacological strategy for the prevention or treatment of age-related diseases, for which there are currently few effective therapies. Lactoferrin (LF)-derived peptides (PKHs) and a set of six rationally-designed tryptophan (W)-containing heptapeptides (PACEIs) were characterized as prolyl endopeptidase (PEP) inhibitors, and their effect on β-amyloid peptide (Aβ) toxicity in a Caenorhabditis elegans model of Alzheimer’s disease (AD) was evaluated. Two LF-derived sequences, PKH8 and PKH11, sharing a W at the C-terminal end, and the six PACEI heptapeptides (PACEI48L to PACEI53L) exhibited significant in vitro PEP inhibition. The inhibitory pe…

0301 basic medicineprolyl endopeptidase inhibitionPeptidelactoferrin-derived peptidesPharmacologyNeuroprotectionCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesneurodegenerative diseases; amyloid β peptide; <i>Caenorhabditis elegans</i>; prolyl endopeptidase inhibition; lactoferrin-derived peptides; rationally-designed peptides; tryptophan; molecular docking0302 clinical medicineProlyl endopeptidaseIn vivomedicineneurodegenerative diseasestryptophanPhysical and Theoretical ChemistryCaenorhabditis eleganslcsh:QH301-705.5Molecular BiologySpectroscopyCaenorhabditis elegansamyloid β peptidechemistry.chemical_classificationbiologyOrganic ChemistryTryptophanmolecular dockingGeneral Medicinebiology.organism_classificationIn vitroComputer Science Applications030104 developmental biologylcsh:Biology (General)lcsh:QD1-999chemistryrationally-designed peptidesToxicity030217 neurology & neurosurgerymedicine.drugInternational Journal of Molecular Sciences; Volume 19; Issue 5; Pages: 1491
researchProduct

In silico identification of small molecules as new cdc25 inhibitors through the correlation between chemosensitivity and protein expression pattern

2021

The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us…

0301 basic medicineHepG2Protein familyCdc25In silicoAntiproliferative activityCell cycleLigandsCatalysisArticleInorganic Chemistrylcsh:Chemistry03 medical and health sciencesCdc250302 clinical medicineCDC2 Protein KinaseDrug DiscoveryHumanscdc25 PhosphatasesComputer SimulationMolecular Targeted TherapyPhysical and Theoretical ChemistryPhosphorylationMolecular Biologylcsh:QH301-705.5DRUDITSpectroscopyBinding SitesbiologyCell growthChemistryOrganic ChemistryGeneral MedicineHep G2 CellsCell cycleAntiproliferative activity; Cdc25; Cell cycle; DRUDIT; HepG2; Molecular dockingLigand (biochemistry)Small moleculeComputer Science Applications030104 developmental biologyBiochemistrylcsh:Biology (General)lcsh:QD1-999Docking (molecular)030220 oncology & carcinogenesisMolecular dockingbiology.proteinDrug Screening Assays Antitumor
researchProduct

Pirrolomicine che inibiscono la Sortasi A nelle infezioni sostenute da batteri Gram-positivi

2018

La Sortasi A è un enzima di membrana responsabile dell’ancoraggio delle proteine di superficie sulla parete cellulare dei batteri Gram-positivi. Essa è considerata un interessante obiettivo per lo sviluppo di nuovi farmaci anti-infettivi che mirino ad interferire con importanti meccanismi di virulenza Gram-positivi. In un precedente lavoro abbiamo indagato sull’attività antistafilococcica e antibiofilm di alcune Pirrolomicine naturali e sintetiche, composti pirrolici polialogenati attivi su patogeni Gram-positivi, alle concentrazioni di 1.5 e 0.045 µg/mL. I risultati biologici hanno mostrato percentuali di inibizione di biofilm comprese tra 50-80% [1]. Allo scopo di indagare sul loro meccan…

Settore CHIM/03 - Chimica Generale E InorganicaMolecular docking.PirrolomicineSortasi A; Pirrolomicine; Molecular docking.Sortasi ASettore BIO/19 - Microbiologia GeneraleSettore CHIM/08 - Chimica Farmaceutica
researchProduct

N-(INDAZOLYL)BENZAMIDO DERIVATIVES AS CDK1 INHIBITORS: DESIGN, SYNTHESIS, BIOLOGICAL ACTIVITY, AND MOLECULAR DOCKING STUDIES

2009

A series of N-1H-indazole-1-carboxamides has been synthesized and their effects on both CDK1/cyclin B and the K-562 (human chronic myelogenus leukemia) cell line were evaluated. Using a computational model, we have observed that all the most active compounds 9e, f, i-n exhibited the same binding mode of purvanalol A in the ATP-binding cleft. Although they were able to moderately inhibit the leukemic cell line K-562 and to show inhibitory activity against the Cdc2-Cyclin B kinase in the low micromolar range, they turned out to be non-cytotoxic against HuDe (IZSL) primary cell cultures from human derm. These preliminary results are quite encouraging in view of the low toxicity demonstrated by…

Models MolecularStereochemistryCyclin BPharmaceutical ScienceAntineoplastic AgentsCyclin BStructure-Activity RelationshipCDC2 Protein KinaseDrug DiscoveryHumansStructure–activity relationshipCell ProliferationCyclin-dependent kinase 1Binding SitesbiologyCell growthChemistryImidazolesN-(1H-indazolyl)benzamides 1H-indazole-3-carboxamides CDK1 Molecular dockingBiological activitySettore CHIM/08 - Chimica FarmaceuticaBiochemistryDocking (molecular)Cell cultureDrug DesignBenzamidesbiology.proteinDrug Screening Assays AntitumorK562 CellsCDC2 Protein KinaseProtein Binding
researchProduct

Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses

2015

Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding e…

0301 basic medicineStereochemistryCell Culture TechniquesCancer drug resistance; Molecular docking; NN-Bis(cyclohexanolamine)aryl ester; P-glycoproteinPlasma protein bindingP-glycoproteinTransfectionBiochemistryRhodamine 123Substrate Specificity03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineCell Line TumorAnimalsRhodamine 123ATP Binding Cassette Transporter Subfamily B Member 1Binding siteP-glycoproteinEpirubicinPharmacologyBinding SitesbiologyMolecular StructureArylEstersCancer drug resistanceNCyclohexanolsMolecular Docking SimulationProtein Transport030104 developmental biologychemistryDocking (molecular)030220 oncology & carcinogenesisMolecular dockingbiology.proteinN-Bis(cyclohexanolamine)aryl esterEffluxBinding domainProtein Binding
researchProduct

Design of new DNA-interactive agents by molecular docking and QSPR approach

2010

The design of new series of pyrrolo-pyrimidine derivatives, further annelated with a third heterocycle of different size, which also present several chain shape moieties of variable length and with different physico-chemical character, is reported. In this contribution we showed that the combination of docking-based and QSPR-based methods could lead to good models for ligand-DNA interaction prediction. By means of these computational approaches on 360 proposed inhibitors, we were able to select the most promising candidates as DNA-interactive drugs potentially endowed with antitumor activity.

Antitumor activitylcsh:QD241-441Quantitative structure–activity relationshipchemistry.chemical_compoundlcsh:Organic chemistryChemistryOrganic ChemistryDNA-interactive agents molecular docking QSPRComputational biologyVariable lengthCombinatorial chemistrySettore CHIM/08 - Chimica FarmaceuticaDNA
researchProduct

IKK-β inhibitors: An analysis of drug–receptor interaction by using Molecular Docking and Pharmacophore 3D-QSAR approaches

2010

Abstract The IKK kinases family represents a thrilling area of research because of its importance in regulating the activity of NF-kB transcription factors. The discovery of the central role played by IKK-β in the activation of transcription in response to apoptotic or inflammatory stimuli allowed to considerate its modulation as a promising tool for the treatment of chronic inflammation and cancer. To date, several IKK-β inhibitors have been discovered and tested. In this work, an analysis of the interactions between different classes of inhibitors and their biological target was performed, through the application of Molecular Docking and Pharmacophore/3D-QSAR approaches to a set of 141 in…

Models MolecularQuantitative structure–activity relationshipReceptors DrugMolecular Sequence DataQuantitative Structure-Activity RelationshipIκB kinaseComputational biologyPharmacologyBiologyMaterials ChemistryHumansAmino Acid SequenceNF-kBHomology modelingPhysical and Theoretical ChemistryProtein Kinase InhibitorsTranscription factorSpectroscopyIKK-betaIKK-beta inhibitors Molecular Docking Pharmacophore 3D-QSAR approachesBinding SitesPharmacophoreKinaseHomology modelingSettore CHIM/08 - Chimica FarmaceuticaComputer Graphics and Computer-Aided DesignI-kappa B KinaseMolecular DockingStructural Homology ProteinBiological targetDrug receptorPharmacophoreJournal of Molecular Graphics and Modelling
researchProduct

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

2016

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

0301 basic medicine300323-Dihydrobenzofuran privileged structure; Cancer; Inflammation; Molecular docking; mPGES-1 inhibitors; Biochemistry; Clinical Biochemistry; Molecular Biology; Molecular Medicine; Organic Chemistry; Drug Discovery3003 Pharmaceutical Science; 3003Amino Acid MotifsClinical BiochemistryGene ExpressionPharmaceutical Science01 natural sciencesClinical biochemistryBiochemistry[ CHIM ] Chemical SciencesProtein Structure Secondary[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundLow affinityDrug DiscoveryEnzyme Inhibitors23-Dihydrobenzofuran privileged structure; Molecular docking; mPGES-1 inhibitors; Cancer; InflammationProstaglandin-E SynthasesCancerAnti-Inflammatory Agents Non-SteroidalBiological activityProto-Oncogene Proteins c-metIntramolecular OxidoreductasesMolecular Docking SimulationMolecular dockingMolecular Medicinelipids (amino acids peptides and proteins)Cell SurvivalStereochemistryMolecular Sequence Data2Antineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancer3-Dihydrobenzofuran privileged structureInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesCell Line TumorMicrosomesHumans[CHIM]Chemical SciencesMolecular BiologyBenzofuransInflammationNatural product010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryEpithelial CellsmPGES-1 inhibitorsCombinatorial chemistryCombined approach0104 chemical sciences030104 developmental biologychemistryDrug DesignDrug Screening Assays Antitumor
researchProduct

Nuovi derivati della Dopamina nell’Addiction da sostanze d’abuso: studi preclinici su modelli sperimentali murini

Dopamine derivatives CNS delivery Acetaldehyde Animal Behaviour Analysis Addiction Dopaminergic Neurotransmission Alcoholism Depressive-like behaviour cognitive flexibility in silico modelling molecular docking.Settore CHIM/09 - Farmaceutico Tecnologico ApplicativoSettore BIO/14 - Farmacologia
researchProduct

METODI CHEMIOMETRICI NELLO STUDIO DEGLI INIBITORI DI HIV-1: TECNICHE STATITICHE MULTIVARIATE E MOLECULAR DOCKING

2006

METODI CHEMIOMETRICI INIBITORI DI HIV-1 TECNICHE STATITICHE MULTIVARIATE MOLECULAR DOCKINGSettore CHIM/08 - Chimica Farmaceutica
researchProduct